The development of man's understanding of planetary motions is the crown jewel of Newtonian mechanics.
This book offers a concise but self-contained handbook-length treatment of this historically important topic for students at about the third-year-level of an undergraduate physics curriculum. After opening with a review of Kepler's three laws of planetary motion, it proceeds to analyze the general dynamics of 'central force' orbits in spherical coordinates, how elliptical orbits satisfy Newton's gravitational law, and how the geometry of ellipses relates to physical quantities, such as energy and momentum. Exercises are provided, and derivations are set up in such a way that readers can gain analytic practice by filling in the missing steps. A brief bibliography lists sources for readers who wish to pursue further study on their own.
The development of man's understanding of planetary motions is the crown jewel of Newtonian mechanics. This book offers a concise but self-contained handbook-length treatment of this historically important topic for students at about the third-year-level of an undergraduate physics curriculum. After opening with a review of Kepler's three laws of planetary motion, it proceeds to analyze the general dynamics of "central force" orbits in spherical coordinates, how elliptical orbits satisfy Newton's gravitational law and how the geometry of ellipses relates to physical quantities such as energy and momentum. Exercises are provided and derivations are set up in such a way that readers can gain analytic practice by filling in missing steps. A brief bibliography lists sources for readers who wish to pursue further study on their own.